ANALISIS PREDIKSI HARGA SAHAM MICROSOFT CORPORATION SELAMA MASA KETIDAKSTABILAN EKONOMI GLOBAL
DOI:
https://doi.org/10.53363/yud.v5i2.134Keywords:
ARIMA, Global Economic Instability, Microsoft Corporation and Stock Price Prediction, Ketidakstabilan Ekonomi Global, Microsoft Corporation dan Prediksi Harga SahamAbstract
Global economic instability, influenced by geopolitical turmoil, high inflation, and financial market pressures. This uncertainty can affect global stock price fluctuations, including MSFT shares. This study aims to analyze and predict MSFT's share price during periods of global economic instability using the ARRIMA time series approach. The data used for the analysis was 753 daily historical data on the closing price of MSFT shares. Based on the results of the stationary test using ADF, the data is non-stationary at the level, and becomes stationary after differentiating once. The best model for data was obtained from the ARIMA model (0,1,0) and obtained an AIC value of 4633,602, an RMSE of 11.20, showing quite good prediction results. The prediction results show that the MSFT share price prediction is close to USD 419 to USD 420. The results of this prediction can be used as a reference in understanding the movement of MSFT shares for investors during periods of global uncertainty.
Downloads
References
Chodakowska, E., Nazarko, J., & Nazarko, ?. (2021). Arima models in electrical load forecasting and their robustness to noise. Energies, 14(23). https://doi.org/10.3390/en14237952
Dhiya Ulhaq, F., Malik, A., Aziz, R., Hasan, M., Rokhim, A., Faila, D., & Hartatri, S. (2025). Analisis Forecasting Harga Kopi Robusta, Arabika, dan Kakao Indonesia Periode 2024-2026 Model ARIMA. Jurnal Penelitian Nusantara, 1, 136–148. https://doi.org/10.59435/menulis.v1i3.84
Eldora, F., & Panggabean, S. (2025). Prediksi Retur Produk Farmasi dan Klasifikasi Risiko Menggunakan Model ARIMA. Juni 2025 Journal of Mathematics Education and Application, 5, 223. https://mathjournal.unram.ac.id/index.php/Griya/indexGriya
Hadiyanto, T., Defit, S., & Sovia, R. (2024). Implementation Of The ARIMA Method In Predicting LQ 45 Stock Prices (UNTR Issuer). In Jurnal Sistem Informasi dan Ilmu Komputer Prima (Vol. 8, Issue 1).
Hasby Kuswanto, Pradita Eko Prasetyo Utomo, Ulfa Khaira, & Akhiyar Waladi. (2025). Prediksi Nilai Ekspor Migas Indonesia Menggunakan Metode SARIMA dan LSTM. SATESI: Jurnal Sains Teknologi Dan Sistem Informasi, 5(1), 69–79. https://doi.org/10.54259/satesi.v5i1.4103
Kurnia, F. A., Hardianti, M., Sinurat, M., & Cahyadi, L. (2025). Analisis Prediksi Harga Saham PT. BCA Dengan Menggunakan Metode ARIMA. ECo-Fin, 7(2), 880–896. https://doi.org/10.32877/ef.v7i2.2373
Masrufah, L. (2022). Kebijakan Moneter dan Fiskal dalam Perekonomian. KASBANA?: Jurnal Hukum Ekonomi Syariah, 2(1), 38–55. https://doi.org/10.53948/kasbana.v2i1.37
Nurahmadini, A., Nyoman Sathya Kresna Vijaya, I., Fitri Arifah, T., Assyfa Ramadhani, Y., & Evi, T. (2024). Analisis Rantai Nilai dan Kinerja Organisasi Setelah PHK Pada Microsoft Corporation.
Rasya Rahadian, D., Nurchim, N., & Permatasari, H. (2025). Pemodelan Prediksi Pergerakan Harga Saham United Tractors Menggunakan Pendekatan ARIMA. Smart Comp: Jurnalnya Orang Pintar Komputer, 14(2). https://doi.org/10.30591/smartcomp.v14i2.7422
Suhada, As-syiva, M. H., Saprida, E., & Arsyadona. (2025). SRATEGI MANAJEMEN RESIKO DALAM MENGHADAPI KETIDAKPASTIAN DI PASAR GLOBAL. Jurnal Sains Student Research, 3(1), 156–163. https://doi.org/10.61722/jssr.v3i1.3275
Toshaliyeva, S. (2024). Using the Arima model to forecast the share of railways in the industry. E3S Web of Conferences, 531. https://doi.org/10.1051/e3sconf/202453102024
Tunggal, A., & Prathivi, R. (2025). Analisis Perbandingan Metode ARIMA Dan LSTM Untuk Prediksi Penjualan Harga Saham BNI (Vol. 6, Issue 1).
Wiejaya, A., & Fenriana, I. (2024). Prediksi Harga Saham Top 10 NASDAQ dengan Time Series Prophet. Bit-Tech, 7(2), 252–262. https://doi.org/10.32877/bt.v7i2.1736
Yosia, R., Trinitas Siregar, M., Rahmah, I. L., & Nugroho, A. (2025). PREDIKSI CURAH HUJAN SEBAGAI PENUNJANG KEGIATAN MICE MENGGUNAKAN MODEL BASED FORECASTING. 5(1). https://jurnalp4i.com/index.php/knowledge
Zidan Rusminto, M., Adi Wibowo, S., & Santi Wahyuni, F. (2024). PERAMALAN HARGA SAHAM MENGGUNAKAN METODE ARIMA (AUTOREGRESSIVE INTEGRATED MOVING AVERAGE) TIME SERIES. In Jurnal Mahasiswa Teknik Informatika (Vol. 8, Issue 2).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Desty Rakhmawati

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.